
XMLRPC Support on VxWorks

Rich Neswold

<neswold@fnal.gov>

April 3, 2002

Abstract
A presentation on using the VxWorks implementation of the

XMLRPC protocol.

Fermi National Accelerator Laboratory

Topics

• Brief review of the XMLRPC protocol

• Using the library on VxWorks

– Using XmlRpc::Value classes

– Using XmlRpc::Fault classes

– Writing a client application

– Writing a server application

• Live examples!

Fermi National Accelerator Laboratory 1

The XMLRPC Protocol

• Platform and language independant

• Uses HTTP as its transport

• Has several types of supported data

– Integer, Double, Boolean, String, Date, Arrays, Structures, and

Binary Data

• Parameters and results are described via XML documents

• Errors are reported through “faults”

Fermi National Accelerator Laboratory 2

A Protocol Example

A server has a function called length() which returns the number of

characters contained in a string passed to it. The prototype for this

interface would be:

int length(string)

For this example, assume the client made the following request:

length("Hello")

Fermi National Accelerator Laboratory 3

An Example (con’t)

The client converts the parameter to an XML document and loads

the POST request with it. The document would look something like

this:

<?xml version=’1.0’?>
<methodCall>

<methodName>length</methodName>
<params>

<param>
<value><string>Hello</string></value>

</param>
</params>

</methodCall>

Fermi National Accelerator Laboratory 4

An Example (con’t)

The server will return an XML document representing the result:

<?xml version=’1.0’?>
<methodResponse>

<params>
<param>

<value><i4>5</i4></value>
</param>

</params>
</methodResponse>

Fermi National Accelerator Laboratory 5

Implementation

• Uses Duane Voy’s web server for VxWorks

• Written in C++

– Uses RTTI and Exception Handling, so -frtti and

-fexceptions compiler options are needed

– Uses nested classes to simulate namespaces (will use namespace,

when available)

Fermi National Accelerator Laboratory 6

The XmlRpc::Value Classes

• All are derived from XmlRpc::Value (which, itself, is abstract)

• XmlRpc::Value has no useful public methods

• Containers (arrays and structures) use pointers to XmlRpc::Value
objects; use dynamic casts to downcast

• Overloaded operators have been avoided

• Must use factory methods to create (prevents stack-based

instances)

Fermi National Accelerator Laboratory 7

XmlRpc::Bool

Represents the XMLRPC boolean type.

• Bool* Bool::create(bool);

Factory method which allocates a new Bool object.

• bool getValue();

Returns the value of the object.

Fermi National Accelerator Laboratory 8

XmlRpc::Date

Represents the XMLRPC date type. NOTE: The XMLRPC protocol

doesn’t specify whether the date is local or GMT; the communicating

applications decide this.

• Date* Date::create(time t = 0);

Factory method which allocates a new Date object.

• time t getValue();

Returns the value of the object.

Fermi National Accelerator Laboratory 9

XmlRpc::Double

Represents the XMLRPC floating point type. The current

specification only supports an optional sign character, followed by

digits, optionally followed by a decimal point and digits – no scientific

notation.

• Double* Double::create(double);

Factory method which allocates a new Double object.

• double getValue();

Returns the value of the object.

Fermi National Accelerator Laboratory 10

XmlRpc::Integer

Represents the XMLRPC 32-bit signed integer type.

• Integer* Integer::create(int);

Factory method which allocates a new Integer object.

• int getValue();

Returns the value of the object.

Fermi National Accelerator Laboratory 11

XmlRpc::String

Represents the XMLRPC string type.

• String* String::create(string const&);
String* String::create(char const*);

Factory methods which allocates a new String object.

• string const& getValue();

Returns the value of the object.

Fermi National Accelerator Laboratory 12

XmlRpc::Binary

Represents the XMLRPC binary type. Use this type as a last resort;

structured data is much more desirable.

• Binary* Binary::create();
Binary* Binary::create(uint8 t const*, size t);

Factory methods which allocates a new Binary object.

• BinData const& getValue();

Returns the value of the object. A BinData object is a vector

of 8-bit values. The data can be accessed by using the subscript

operator.

Fermi National Accelerator Laboratory 13

XmlRpc::Struct

Represents the XMLRPC struct type.

• Struct* Struct::create();

Factory method which allocates a new Struct object.

• void add(string const&, Value const*);

Adds a data type to the structure and associates it with a field

name.

• Value const* get(string const&);

Returns the data associated with the field name or NULL if it isn’t

found.

Fermi National Accelerator Laboratory 14

XmlRpc::Array, (XmlRpc::Params)

Represents the XMLRPC array type.

• Array* Array::create();

Factory method which allocates a new Array object.

• void append(Value const*);

Expands the array and adds a data type to the end.

• Value const* get(size t);

Returns the data at the specified index. If the index is out of range, NULL is
returned.

• size t size();

Returns the number of (top-level) elements in the array.

Fermi National Accelerator Laboratory 15

Using XmlRpc::Value Objects

This example creates an array of ten random integers.

Array* a = Array::create();

for (size_t ii = 0; ii < 10; ++ii)
a->append(Integer::create(rand()));

• The append() takes an XmlRpc::Value*. The *::create()
return pointers to objects derived from XmlRpc::Value, so they

can be used as arguments.

• Once you give an allocated object to a container, the container

becomes the owner – even if you later extract it.

• This example works when there is a lot of heap available.

Fermi National Accelerator Laboratory 16

Using XmlRpc::Value Objects (con’t)

This example prints the integers in an array.

Array* a = ...; // Created elsewhere

for (size_t ii = 0; ii < a->size(); ++ii) {
Integer const* v = dynamic_cast<Integer const*>(a->get(ii));

if (v)
printf("a[%u] = %d\n", ii, v->getValue());

else
printf("a[%u] isn’t an integer!\n", ii);

}

Fermi National Accelerator Laboratory 17

Error Handling

• XMLRPC handlers can only return one value (which may be an

array or structure)

• The signify errors, a handler returns a fault

• Faults are essentially structures with two fields: faultCode and

faultString

• OO languages generally map faults into their native exception

handling mechanism.

Fermi National Accelerator Laboratory 18

The XmlRpc::Fault Classes

• All exceptions thrown by this module have XmlRpc::Fault as their

base class.

• Due to design decisions, Fault pointers are thrown. This means

the catcher is responsible for freeing up the memory.

• The XMLRPC specification doesn’t reserve any values for the error

codes.

Fermi National Accelerator Laboratory 19

XmlRpc::Fault

The most general class used to report XMLRPC faults. This is also

the base class for other fault classes.

• Fault(int, string const&);
Fault(int, char const*);

These constructors create a new Fault object.

• int getCode();

Returns the error code of the fault.

• string const& getMessage();

Returns the error message of the fault.

Fermi National Accelerator Laboratory 20

XmlRpc::MemFault

Indicates a memory problem caused the failure.

• MemFault();

This constructor creates a new MemFault object. The error code

is set to 800.

Fermi National Accelerator Laboratory 21

XmlRpc::ParseFault

Indicates the XML parser found a syntax error.

• ParseFault(char const*);

This constructor creates a new ParseFault object. The error code

is set to 801.

Fermi National Accelerator Laboratory 22

XmlRpc::ArgFault

This gets thrown when an XMLRPC handler doesn’t like the

arguments passed to it.

• ArgFault(char const*);

This constructor creates a new ArgFault object. The error code

is set to 802. The string passed to the constructor will get sent to

the caller (across the network.)

Fermi National Accelerator Laboratory 23

Using XmlRpc::Value Objects (revisited)

Let’s redo our first example. This time, we’ll make it more robust by

handling possible faults.

Array* a = Array::create();

try {
for (size_t ii = 0; ii < 10; ++ii) {

Integer const* v = Integer::create(rand());

try { a->append(v); }

catch (...) { delete v; throw; }
}

}

catch (...) { delete a; throw; }

Fermi National Accelerator Laboratory 24

VxWorks Client Example

STATUS getReading(char const* str)
{

Server server("due12.fnal.gov", 4352, "/xmlrpc/Accelerator");
Request req("getReading");

try {
req.addParam(String::create(str));

Reply const* const rep = server.send(req);
Struct const* const s = dynamic_cast< Struct const* >(rep->result());

printf("Device: %s\nValue: %f %s\n", str,
dynamic_cast< Double const* >(s->get("scaled"))->getValue(),
dynamic_cast< String const* >(s->get("units"))->getValue());

delete rep;
}
catch (Fault* e) {

printf("Fault %d : %s\n", e->getCode(), e->getMessage());
}
return OK;

}

Fermi National Accelerator Laboratory 25

Building a Server Handler

To build a server-side handler for XMLRPC requests, the following

steps must be taken:

• Write the handler

• Register the handler, along with any other related handlers, with a

service

• Load, onto VxWorks, your new service’s object file after the

XMLRPC module

Fermi National Accelerator Laboratory 26

Step-by-step Example

For this example, we’ll define an XMLRPC service named “Sample”.

One of the functions in this service is hello(), which takes no

arguments and returns the string “Hello, World!”.

Fermi National Accelerator Laboratory 27

Step: Write the Handler

static Reply const* helloWorld(Request const& req)
throw (Fault*)

{
if (req.nArgs() == 0) {

Reply* reply = new Reply;

if (reply) {
reply->addParam(String::create("Hello, World!"));
return reply;

} else
throw new MemFault();

} else
throw new ArgFault("no parameters, please");

}

Fermi National Accelerator Laboratory 28

Step: Register with the Service

First we make sure our service is defined:

static Service modSample("Sample",
"This is a sample module. It contains several functions used "
"to test the implementation and to test out client code.");

Next we register our handler:

static MethodInfo const hdlr1(modSample,
helloWorld, "hello", "string hello()",
"An extremely boring procedure call. Simply returns \"Hello, World!\"");

Fermi National Accelerator Laboratory 29

Step: Loading onto VxWorks

Add commands to your VxWorks start-up script to load the module

(assume, in this example, our module is called sample.out):

ld < vxworks_boot/fe/deadoak/libmewstest2400.out
MEwsNew(80, 5, 100, "vxworks_boot/fe/deadoak/mews/", 0)
MEwsAddPrivileges(3, 0x83e18867, 0xffffffff)
ld(1,1,"vxworks_boot/module/PPC750/xmlrpc-latest.out")
ld(1,1,"sample.out")

Fermi National Accelerator Laboratory 30

** Time out for some real examples **

Fermi National Accelerator Laboratory 31

Timing

Client

Function Handler Time Python C++

hello 1.0 mS 20.3 mS 38.9 mS

getTasks 3.5 mS 135.6 mS (*) 62.5 mS
Notes:

• Measurements were made with tcpdump.

• Python times were from secondary calls (the communications were set up with the server during

the first call.) The C++ times include this initialization.

• The Python times increase rapidly as the returned document gets more complicated. Alternate

parsers will improve the performance.

(*) When sending the return value of getTasks() to echo(), the PowerPC took 750µS to parse

the parameter and return a value.

Fermi National Accelerator Laboratory 32

Final Comments

Cons:

• Web server security needs to be vastly improved

– Too much functionality in web server
– Install IPFilter

• Parser is “open-ended” – it should probably restrict the size of the requests

• Network resources need to be improved in kernel

– More socket handles
– Support HTTP 1.1
– Tune the garbage collector parameters

Fermi National Accelerator Laboratory 33

Final Comments

Pros:

• Easy to create handlers

• Can talk to clients from many operating systems and many, many

programming languages

• Uses a standardized, published protocol

• Front-end is self-documenting

Fermi National Accelerator Laboratory 34

